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Abstract. The problem of the occurrence of semi-slow speed oscillations of an unbalanced 

rotor during its passage through the resonance zone has been solved using the method of direct 

separation of motions. It has been proved that when a stationary regime is established, semi-

slow damping oscillations of the rotor speed arise in the region of the Sommerfeld effect, they 

are the result of the superimposement of free accompanying oscillations with a relatively low 

frequency on forced fast oscillations. In this respect, the initial amplitudes of such oscillations 

are quite large, and oscillations damping is relatively slow. 

Keywords: vibration machine, Somerfeld effect, inertial vibration exciter, semi-slow 

oscillations. 

 

1. Introduction  

 

Inertial vibration exciters are used to drive a wide variety of vibration machines. Most of 

these machines operate in resonance mode. The problem of their passage through the resonance 

zone is quite important for vibration engineering. It has been well studied already. A review of 

the works in this field is given, for example, in the books [1, 2]. In particular, these studies draw 

our attention to the fact of existence of fast, slow and semi-slow motions in the region of the 

Sommerfeld effect. The existence of semi-slow rotor motions nearby the resonance zone of the 

carrier system was mentioned in [3-6]. It is important that semi-slow oscillations are used to 

facilitate the passage of vibration machines though the resonance zones. 

In [3], a quantitative analysis of semi-slow oscillations of an unbalanced rotor is 

performed; an expression for the frequency of such oscillations is obtained. Attention is drawn 

to the fact that the equation of semi-slow oscillations can be used to improve the start-up control 

systems for super resonance vibration machines. Practical examples of the use of semi-slow 

motions to facilitate the passage through the resonance zone are considered in [7-9]. 

This paper is devoted to the extension of the results obtained in [3]. Using the direct motion 

separation method it is shown that the general solution for the fast motion equation describes a 

transition process towards ascertainment of a stationary motion mode of an unbalanced rotor in 

the resonance zone of vibration machine, as well as that semi-slow oscillations of the rotor 

speed are seen as transition process in the region of the Sommerfeld effect. 

 

2. Dynamic model and system motion equations 

 

The dynamic model of the vibration machine is adopted in the form of a bearing body 

connected with a fixed base by linear elastic and damping elements; with an unbalanced 

vibration exciter (unbalanced rotor) driven by an asynchronous electric motor (Fig. 1) placed 

on. The bearing body can move only in a strictly fixed direction Ox . The equations of system 

motions can be represented as 

 

    ( sin cos ),I L R m x g                                                                                         (1) 

 2sin cosx xMx x c x m         ,                                                                                   (2) 
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where   –  rotor angle; x  – relocation of bearing body; I  – rotor moment of inertia; ,m   – 

rotor mass and its eccentricity; xc – coefficient of elastic element axial stiffness; x – coefficient 

of elastic element viscous friction;  L   – electric motor torque (its static characteristic); 

 R  – moment of resistance to rotation; g  – gravity acceleration. 

 

 
Fig. 1. Dynamic model of vibration machine 

 

3. Semi-slow speed oscillations of unbalanced rotor 

 

To study the motion of the rotor during its passage though the resonance zone we use the 

method of direct separation of motions [1, 2]. Looking for solutions to system (1), (2) in the 

form of    ( ) , , ,t t t x x t t       , we consider ( )t
 
 – as  slow, and  and

  
x  –  as 

fast 2  –  periodic in t   functions, while their average value over the period on   equals 

to zero; we also accept that   . We are determining the coordinate 
 
in the following 

way:    ( ) ,t t t t t       , where ( )t
 
is some function t , which we consider as slow 

one; we’ll disregard it in the future. 

Note that the “sticking” mode of the rotor speed during slow passage of the vibration 

machine through the resonance zone is of particular interest because its the most loaded mode 

of its operation. 

Following this method, we get the equations of slow and fast rotor motions in the form obtained 

in [2] 

 

    ( )I L R V      ,                                                                                                        (3) 

( , )I k x       ,                                                                                                                (4) 

 

where ( ) sin cosV m x g      – vibration moment; k  – total damping coefficient; 

( , ) ( sin cos sin cos )x m x g x g           ;  – small parameter. 

Here and down the text, angle brackets indicate the averaging over a period 2T   by 

quick time  . Moments    ,L R   linearized nearby «sticking» frequency    ( xp  ), 

according to the formulas   1( )L L k    ,   2( )R R k    ,  when 1 2k k k  , 1 2,k k  – 

electrical and mechanical damping factors [2]; x xp c M . 

In [2] in the initial approximation, (0) 0   , (0) t  ,   (0) (0) cos( )x xx A t   , was 

obtained the expression for the vibration moment 

 

max( ) sin xV V   ,                                                                                                                     

(5) 
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In (5) value xA   represents the amplitude of the stationary forced oscillations described by 

the equation 2 2cosx xMx x c x m t X       . 

Expression for vibration moment (5) is the following           
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According to (6), the magnitude of the vibration moment is proportional to the square of the 

dynamic coefficient, i.e. its frequency dependence is of a substantially resonant character. Thus, 

when the rotor passes slowly through the resonance zone, there is a rapid increase in the 

inhibitory vibration moment, which leads to the frequency "sticking". To analyze the transition 

process towards the steady rotor motion in the region of the Sommerfeld effect, let‘s examine 

the equation of fast motions (4). We represent equations (4) in the form obtained in [3] while 

studying the semi-slow oscillations of the rotor ( t    ) 

 

[ sin( ) sin ]I k m x t x t         .                                                                                  (7) 

 

Note that the same as in [3], we do not take into consideration the effect of the gravity 

moment on the ongoing dynamic processes. 

By linearizing the right side (7)  on   taking into account the solution of the equation (2) as 

(0)x , we give the equation of fast motions in the form 

 

1 max max 2sin(2 ) ( ) cos(2 ) sinx xI k c V t V V t k m x t                              (8)                                    

or  
2

12 sin2xb p Ф t          ,                                                                                          (9) 
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Note that the estimates of the terms of the fast motions equations made in [3, 10] were taken 

into account above. 

As we can see, the equation of fast motions takes the form of the equation of small forced 

oscillations; the coefficient c  
can be called the conditional stiffness coefficient. In case of a 

slow passage through the resonance zone, the coefficient c  
begins to increase significantly; 

when xp 
 
– it turns into zero. If the frequency exceeds the critical value xp  , the 

coefficient c  
takes a negative value, and, accordingly, the stationary mode becomes unstable. 

Therefore, the term c  
is so called a restoring moment; when xp 

 
it "ensures" the stability 

of the stationary regime in the region of the Sommerfeld effect. 



In equation (8), the value p  
represents the natural frequency of so-called semi-slow 

oscillations of the unbalanced rotor. A detailed analysis of the expression for the frequency is 

given in [3]; it is shown that for the validity of the equation of semi-slow oscillations it is 

necessary that 3p  , as a rule, this condition is satisfied for vibration machines under 

study.  

To study the transition regime towards steady motion in the region of the Sommerfeld 

effect, we have to find the general solution of the fast motion equation (9). For clarity, we’ll 

disregard the influence of resistance forces. At the same time, we take into account that: the 

effect occurs with a rapid increase in the vibration moment ( )V  , which action can be 

evaluated by impetus ( 2 p  ); inhibitory effect of vibration moment occurs during the half 

of its oscillations period; prior to the occurrence of the effect the rotor speed oscillations are 

relatively small.  Consequently, the initial conditions are presented as 
0 0  , 0 maxV I  . 

Then, the expression describing the oscillations of the rotor frequency during the establishment 

of a stationary mode will be presented as follows 

 

1 2cos cos2Ф p t Ф t   ,                                                                               (10)  
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Let’s analyze the resulting solution. In this case, we have to recall the assumption adopted 

above on disregarding the friction forces, they only dampen free vibrations in the case 

p  . Therefore, when a stationary mode of rotor rotation is established, a transient process 

takes place, which can be described as a damping biharmonic oscillation of the rotor speed with 

a fundamental frequency equal to the frequency p , i.e. non-stationary process looks like a 

relatively slow oscillations. It is not difficult to establish that the initial amplitudes of these 

oscillations are large enough, they are at least a third as much as the amplitudes of the stationary 

regime that is being established subsequently. Of course, semi-slow oscillations are dampening 

over time and turn into purely forced monoharmonic oscillations. 

 

4. Results of computer simulation 

 

During the simulation, the following parameter values were set: 40M kg ; 3m kg ; 

0,03m  ; 20,006I kg m  ; 47,5 10 /хс N m  ; 135 /x kg s  ; electric motor – 

asynchronous, with a frequency 1500sn rtm , power 0,6P kW
 
[11]. 

                                     
                    а)                                                                  b) 

Fig. 2. Change of rotor speed spinning in time: a) from the moment of the engine start-up; 

b) in the steady regime: 1 – passage through the resonance zone; 2 – speed “sticking” 



 

As it can be seen from the graphs Fig. 2 (a), Fig. 3 (a), when the rotor speed is “sticking”, 

biharmonic oscillations are excited, which are the result of superimposement of damping 

oscillations with a relatively low frequency ( 113,8 s ), approximately equal to the frequency 

p , on fast oscillations ( 183,7 s ), frequency of which is close to the doubled frequency of the 

rotor speed “sticking”  ( 12 83s  ; 143,3xp s    ) In this case, the initial amplitudes of 

such oscillations are quite large (the maximum reaches 111,8 s , but subsequently, in the 

stationary mode they decrease to 13,3 s ), and the dampening of semi-slow oscillations is 

relatively slow (up to 5 s ). 

The graphs in fig. 2 convincingly indicate that semi-slow oscillations are seen as an 

unsteady process in the region of the Sommerfeld effect. 
 

              
а)                                          b) 

Fig. 3. Change of rotor speed spinning in stationary regime obtained by numerical solution: 

a) the initial system of motion equations (1), (2); b) equations of fast motions (9) 

 

The simulation results are in good agreement with the calculation results according to the 

formulas obtained: 
113,3p s

 ; 1

1 8,5Ф s , 1

2 2,9Ф s  (the frequency of “sticking” is 

accepted according to Fig. 2 and is equal to 141,4 s  ).  

In support of the foregoing, a graph (Fig. 3 (b)) of the rotor frequency oscillations  during 

the speed “sticking”  is presented, a graph was obtained as a result of a numerical solution of 

the fast motion equation (9). Comparing this graph with the numerical solution of the initial 

system of equations (1), (2), we can conclude that the results are well comparable and describe 

the same dynamic process. 

 
5. Results and discussion 

 

Thus, when a speed of the unbalanced rotor stucks in the resonance zone, its relatively slow 

(compared to the frequency  ) damping oscillations are excited. Taking into account the 

quantitative estimates of parameters of motions (frequencies) taking place in the system, such 

oscillations are often called semi-slow.  

The described regularity of the system motion is also represented as the presence of the 

“inner pendulum” and its semi-slow oscillations in the region of the Sommerfeld effect. The 

natural oscillation frequency of the “inner pendulum” is also called the “Blechman frequency” 

[8]. Using this approach, it can be easily found with sufficient accuracy for practical use. 

The maximum amplitudes of the arising semi-slow oscillations of the rotor speed are quite 

large, and their dampening happens slowly, thus it can be of a significant danger for vibration 

machines [11]. 



Following the approach used, it is easy to show that the action of the gravity moment on the 

rotor does not directly have a significant effect on the dynamic processes under study. 

For the case when the oscillatory part of the system has several degrees of freedom, the 

equation of semi-slow oscillations retains its form. Only the expression for the frequency of 

semi-slow oscillations is changing, the methodology used for determining is the same. 

 

6. Conclusions 

 

Semi-slow speed oscillations of the unbalanced rotor observed during the vibration machine 

passage through the resonance zone are seen as a transition process towards the steady rotor 

motion in the region of the Sommerfeld effect. 

Semi-slow speed oscillations can cause significant drive vibrations, that must be taken into 

account when designing this type of vibration machines. 

The conducted research will contribute to the selection of parameters for the algorithms for 

controlling the passage of vibration machines with inertial vibration exciters  through the 

resonance zone.  
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